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On the Stability of Uniformly Asymptotically Diagonal 
Systems 

R. S. Anderssen and B. J. Omodei 

Abstract. In a number of papers ([1], [2]), Delves and Mead have derived some useful (though 
limited) rate of convergence results which can be applied to variational approximations for the 
solution of linear positive definite operator equations when the coordinate system is uniformly 
asymptotically diagonal. Independently, Mikhlin [5] has examined the stability of such 
variational approximations in the case of positive definite operators and concluded that the 
use of strongly minimal coordinate systems is a necessary and sufficient condition for their 
stability. Since, in general, the Delves and Mead results will only be applicable to actual 
variational approximations when their uniformly asymptotically diagonal system is at 
least strongly minimal, we examine the properties of uniformly asymptotically diagonal 
systems in terms of the minimal classification of Mikhlin. 

We show that 
(a) a normalized uniformly asymptotically diagonal system is either nonstrongly minimal or 

almost orthonormal; 
(b) the largest eigenvalue of a normalized uniformly asymptotically diagonal system is 

bounded above, independently of the size of the system; 
(c) the special property of normalized uniformly asymptotically diagonal systems men- 

tioned in (b) is often insufficient to prevent their yielding unstable results when these sys- 
tems are not strongly minimal. 

1. Introduction. The aim of this paper is to relate the work of Delves and Mead 
on uniformly asymptotically diagonal systems to Mikhlin's work on the minimal 
classification and necessary and sufficient conditions for the stability of variational 
methods. 

We restrict our attention to linear operator equations 

(1.1) Au =f (f E 1) 

where A is a positive definite symmetric operator defined on a domain @(A), a linear 
manifold dense in a given separable Hilbert space A, and the range of A is in D. By 
positive definite we mean that (Au, U) > 72 llU112 for all u et(A), where y is a positive 
constant. For a suitably complete set of coordinate elements {4,}, the approximate 
Ritz-solution (or variational solution) of (1.1) is defined to be 

(1.2) Un - a 
i= 1 

with the unknown a(n) defined by the Ritz-system 

(1.3) Rn a(n) f (n) 

where 
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a(n) [a a , a(n) 

(ROY = (A~p,(i) (ij= 1,2,. ..,n), and 

f (n) = [(f, 1), (f, 4)2), **(f, On)]T. 

In the limit as n -> o, (1.3) and Rn becomerespectively, the infinite Ritz-system and 
the infinite Ritz-matrix R. 

Under the assumption that A is positive definite, the energy inner product and 
norm are defined by [u, v] = (Au, v) and u = [u, u]'12, u, v E (A), respectively. 

The energy space KA iS the completion of @(A) with respect to the energy norm. 
It is shown in Mikhlin [3, Section 5] that the positive definite operator A can be 
extended to a selfadjoint operator the domain of which is in A. Denoting the 
extension of A as A, it follows from Mikhlin [3, Sections 5, 8] that 

(i) (1.1) defines a one-one mapping from T(A),the domain of the extension, onto 
A, and 

(ii) if uo denotes the exact solution of (1.1), then 

lim IuIn - uo III = 0 
n-eoo 

For these reasons, we restrict our attention to such operators, thus ensuring the 
existence and uniqueness of the exact solution, and the convergence of the Ritz- 
solution to the exact solution in )A. Furthermore, from Mikhlin [4, p. 324], 
convergence in ) is also ensured. 

We note in passing that approximate variational solutions can be constructed 
for operators which are positive, i.e., (Au, u) > 0 for all u = 0, u E @(A), but not 
positive definite. However, care must be exercised to ensure that (1.1) has a solution 
and that Un converges to uo in ) {see, for example, Mikhlin [3, Section 6]). 

Next,we note that though the above conditions guarantee the convergence of Un 
to uo, they do not ensure the stability of the inversion of (1.3) with respect to 
rounding error perturbations. This has been cogently demonstrated by Mikhlin [5, 
Section 8]. Mikhlin has shown that, at least for positive definite operators, the 
stability of the estimation of a$(n) and Un depends upon the choice of coordinate 
elements { 

Two independent classes of coordinate systems have been discussed in recent 
literature; viz., the uniformly asymptotically diagonal systems of Delves and Mead, 
and the minimal systems of Mikhlin. For their uniformly asymptotically diagonal 
systems, Delves and Mead derive rate of convergence results but ignore the question 
of stability, whereas Mikhlin shows that a necessary and sufficient condition for 
stability is the strong minimality of the {)i} (the relevant definitions and results are 
cited in Section 2). Since it appears therefore that the Delves and Mead results will 
probably only be useful for uniformly asymptotically diagonal systems which are 
stable, we examine the properties of normalized uniformly asymptotically diagonal 
systems in terms of the minimal classification of Mikhlin. After developing 
preliminaries in Section 2, we establish in Section 3 that 

(a) a normalized uniformly asymptotically diagonal system is either nonstrongly 
minimal or almost orthonormal, and 

(b) the largest eigenvalue of a normalized uniformly asymptotically diagonal 
system is bounded above, independently of the size of the system. 



UNIFORMLY ASYMPTOTICALLY DIAGONAL SYSTEMS 721 

In addition, we consider two classes of coordinate systems which show that 
neither strongly minimal systems nor normalized uniformly asymptotically diagonal 
systems are subclasses of the other. By constructing a specific example, we show in 
Section 4 that 

(c) normalized uniformly asymptotically diagonal systems which are nonstrong- 
ly minimal can exhibit instability. 

2. Preliminaries. In this section, we state relevant definitions and results from the 
theory developed by Delves and Mead, and Mikhlin. 

The Delves and Mead Results {see [1], [2]). 
Definition 2.1.An infinite Hermitian matrix R is said to be uniformly asymptoti- 

cally diagonal (U.A.D.) of degree p (> 0) if, for all i and for all n > i, there exists 
a positive constant C such that 

(2.1) |Ri, /(R | Ri1, )1/2 < Cn-P. 

Remark 2.1. If (2.1) is true for all n and i, n > i, then it can be shown that (2.1) 
will hold for all n and i, n # i. 

Remark 2.2. Regarding terminology, we refer to a set of coordinate elements {ki) 

as a U.A.D. system with respect to an operator A, if and only if the corresponding 
infinite Ritz-matrix R is U.A.D. 

Remark 2.3. Delves and Mead [1] have shown that the U.A.D. property is 
invariant under an arbitrary renormalization of the coordinate elements {Pi}. 

Therefore, we can always renormalize to ensure that 

Ri1 = 1 (i = 1, 2,...). 

For this reason, Delves and Mead ([1], [2]) only considered matrices R which had 
been normalized in this way, and their theorems are proved for such systems. 

Definition 2.2. A U.A.D. system of degree p is said to be "nice", if 
(i)p > 1, 
(ii) the system is normalized such that Rij = 1 (i = 1, 2,... ), and 
(iii) 0 < C < C(p) where C is the constant in Definition 2.1, and 

C (p) = (P -1) [((8p - 7)2 + (8p2 - 8p - 1))1/2 - (8p - 7)]. 

Remark 2.4. In Delves and Mead ([1], [2]), "nice" systems are used extensively. 
In fact, only one of the rate of convergence theorems in [1] apply to non-nice 
systems. 

Dropping the restriction on C in (iii) leads to the following definition. 
Definition 2.3. A normalized uniformly asymptotically diagonal (N.U.A.D.) system 

of degree p is a U.A.D. system satisfying 
(i) p > 1, and 
(ii) Ri = 1 (i = 1, 2,...). 
Remark 2.5. We could have defined a less restrictive U.A.D. system than the 

N.U.A.D. system, but this would not change the character of the results derived 
below, but only lead to a rather cumbersome presentation. 

The Mikhlin Results {see [5]). 
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Definition 2.4. A system of elements of a Hilbert space ) is called a minimal 
system in this space, if the deletion of any one of the elements from the system 
restricts the closed linear subspace generated by the new set to a proper closed 
subspace of the closed linear space generated by the original set. 

Consider the countable system of elements {pi} lying in the Hilbert space &, and 
the corresponding Gram matrix of the first n elements of {i}, viz. 

(2, 01 )h (02, 2h ... (02, ,fnfh 
. . *... ... ... 

((Pn 0 )1 .. ...** ((Pn 1 0)n ),t 

Since this matrix is Hermitian and nonnegative semidefinite, its eigenvalues are 
nonnegative and can be written in increasing order as 

0 < X,(n) < X,(n) < . .. < X,(n) 

Definition 2.5. The system {4i} is called strongly minimal in &, if there exists a 
positive constant XO independent of n such that 

inf n) = lim n) ? x0 > O. 
n-+ oo 

Definition 2.6. The system {ki} is called almost orthonormal in A, if there exist 
positive constants X0, Ao such that for all n and m, m - n, the following inequality 
holds: 

0 <X0 ' Xnn) ' A0. 

Remark 2.6. 
(i) Every strongly minimal system is minimal. 
(ii) A minimal system can be renormalized to yield a strongly minimal system 

{see Dovby's [6] }. 
We shall now introduce Mikhlin's definition of numerical stability. We consider 

the exact Ritz-process 

(2.2) Rn a(n) =f W 

Let Ykm = Ymk denote the (small) errors arising in the evaluation of the inner 
products (A(kk, (km), and Fn the matrix with elements Ykm (k, m = 1, 2, ... , n). Let 6(n) 

be the corresponding error in f (n. Instead of the exact Ritz-process (2.2), we solve 
the following nonexact Ritz-process: 

(2.3) (Rn + Fn)b(n) = f (n) + 6(n) 

where bin) is the column-vector of the nonexact Ritz-coefficients. 
Definition 2.7. The Ritz-process is stable, if there exist constants p, q, and r 

independent of n such that, for IFn =' r and arbitrary 3(n), the nonexact Ritz- 
process is soluble and the following inequality holds: 
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In the opposite case, we say that the Ritz-process is unstable. 
THEOREM 2.1. {See Mikhlin [5, Section 9].} In order that the Ritz-process of (1.1) 

be stable, it is necessary and sufficient that its generating coordinate system be strongly 
minimal in the corresponding energy space; i.e., the eigenvalues of R, are uniformly 
bounded away from zero. 

The solution of the exact Ritz-process (2.2) yields the exact approximate Ritz- 
solution 

n 
(n) 

Un = E ak Ok, 
k=1 

and the solution of the nonexact Ritz-process (2.3) yields the nonexact approximate 
Ritz-solution 

n 

vn = E bk~ k. 
k=l 

The definition of stability for the solution of the exact Ritz-process (2.2) is 
analogous to Definition 2.7, and a theorem almost identical to Theorem 2.1 is valid 
{see Mikhlin [5, Section 10]}. 

3. The Minimal Classification of N.U. A.D. Systems. In this section, we show that 
N.U.A.D. systems are either nonstrongly minimal or almost orthonormal. We start 
by deriving conditions under which N.U.A.D. systems can be almost orthonormal. 

THEOREM 3.1. The largest eigenvalue of an N.U.A.D. system is bounded above 
independently of n. 

Proof. We use Brauer's theorem {see [7]) to obtain the upper bound 

Ao= ?+Cp/(p-1). 

THEOREM 3.2. The smallest eigenvalue of an N. U.A.D. system is bounded away from 
0 independently of n, provided 

(3.1) C < (p - 0/p, 

where C and p are defined in Definition 2.1. 
PROOF. We use Gerschgorin's theorem {see [8]} to obtain the lower bound 

X= -Cp/(p - 1)>0. 

COROLLARY 3.1. An N. U.A.D. system is almost orthonormal provided C < 

(p- 1)/p. 
Proof. This is an immediate consequence of Theorems 3.1 and 3.2. 
COROLLARY 3.2. The "nice" systems of Delves and Mead are almost orthonormal. 
Proof. A "nice" system is an N.U.A.D. system satisfying 

C < C(p) = (p- 1) [{(8p 7)2 + (8p2 - 8p - 1)1/2 - (8p - 7)]. 
(8p2 

- 
8p- 

It can be shown that C(p) < (p - 1)/p forp > 1, and hence, using Corollary 3.1, 
Corollary 3.2 is proved. 

COROLLARY 3.3. N.U.A.D. systems are either nonstrongly minimal or almost 
orthonormal. 
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Proof. Since the eigenvalues of an N.U.A.D. system are bounded above 
independently of n, an N. U. A. D. system which is strongly minimal must also be 
almost orthonormal, proving the corollary. 

Next, we show by constructing two classes of systems that 
(i) there exist almost orthonormal systems which are normalized but not 

N.U.A.D., and 
(ii) there exist N.U.A.D.systems which are not strongly minimal and hence not 

almost orthonormal. 
Definition 3.1. A coordinate system will be said to be of Class A, if its infinite 

Ritz-matrix R has the following form: 

1 a, a2 a3 

- 10 0... 
a2 0 1 0 

(3.2) R a3 0 0 1 

and satisfies the following conditions: 
(a) jai, ? c/i for some constant c > 0, and 
(b) Ei= I ail21 

Such a Ritz-matrix is 
a ?(21) af(31) 4t41) 

a(2)q 1 0 0 . 

3x(3 0 1 0 . 

(3.3) R= a(4) 0 0 1 . . 

where < q 1 and .?2 2 K 1/a2. 
Clearly conditions (a) and (b) of Definition 3.1 are satisfied. 
A system which generates such a Ritz-matrix is as follows: Let the operator A 

be the identity operator in L2(0, ), and as coordinate functions, we take 

= \/ (7g - X), ?,(x) = / sin ix (i = 2,3,.. .). 

THEOREM 3.3. Systems of Class A are almost orthonormal and normalized but not 
N. U.A .D. 

Proof Initially, we determine the eigenvalues for the Ritz-matrix R,. It is easily 
shown that det (R,- A(n)In) = 0 yields 

An-i 

(3.4) x(n) = 1 1 ? 2 
i =1 
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and thus, for all n, 

X(n) <1? + 12 Xai-> and )>1- I a12 = X. 

From condition (b) of Definition 3.1, we obtain 

0 < X0 C A(n) C A 
(for all n and s, n ' s), i.e., the system is almost orthonormal. 

From condition (a) of Definition 3.1, the system cannot be N.U.A.D. 
Definition 3.2. A system will be said to be of Class B, if its infinite Ritz-matrix R has 

the same form as (3.2) and satisfies the following conditions: 
(a) jai I < CiFy where C is a positive constant and p > 1, and 
(b) Ei-. jai12 = 1 with infinitely many ai # 0. 

Such a Ritz-matrix is given by (3.3) with 

2 = i -2q and q > 1. 
a i=2 

A system which generates such a Ritz-matrix is as follows: Let 

Au = -d2 u/dx2 

with @(A) the set of twice continuously differentiable functions which satisfy 
u(O) = u(7) = 0, and & = L2(0, 7). As coordinate functions, we take 

(X) = X x(x - 7) (x - 27), 

Wi(x) = / i sin ix (i = 1,2,3,...). 

THEOREM 3.4. Systems of Class B are N. U.A.D. but not strongly minimal. 
Proof. Since Jail _ Ci-P where p > 1, it is easily verified that the system is 

N.U.A.D. 
From (3.4) in Theorem 3.3, 

an-i 

Agn) = 1 - 
fE 

Since ,= jai 12 = 1, the system is nonstrongly minimal and the theorem is proved. 
Thus, we have shown that N.U.A.D. systems are sometimes nonstrongly 

minimal, and, when strongly minimal, they are almost orthonormal. 

4. The Numerical Stability of N.U.A.D Systems. In this section, we show that the 
use of N.U.A.D. systems to solve positive definite operator equations can lead to 
unstable solutions. In Section 3, we showed that N.U.A.D. systems are sometimes 
strongly minimal and sometimes not. Hence, on the basis of Theorem 2.1 of Section 
2, the corresponding Ritz-process for N. U. A. D. systems can be stable or unstable. 
In particular, the use of an N.U.A.D. system of Class B can yield unstable results. 
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In order to confirm that instability does arise through the use of such systems, 
we construct an N.U.A.D. system which is nonstrongly minimal in the energy space, 
and use it to solve a positive definite operator equation. 

Let the operator equation be 

(4.1) Au = -d2u/dx2 = , f E L2(0,1 r), 

with i(A) the set of twice continuously differentiable functions which satisfy 
u(O) = u(7) = 0. It is easily shown that this defines a positive definite symmetric 
operator. 

As coordinate functions, we take the Class B system 

( x2(x-77) -A 

a 
whra= 15' 

(4.2) 

Since Rij = [4p, pi] = (A4p, (pi), it follows that 

Rii = 1 (i = 1,2, ...), 

Ri+,,j+l = 0 (i # j; ij = 1,2, ... ), 

(4.3) 2 *27 (for i odd), 

RIi+I = Ri+ = 62 
/ i2a (for i even). 

Since IRi j+I _ (6V2-/a)j-2 (for all i and j, i ' j), the system is N.U.A.D. with 
p = 2. 

Because cos ix (i = 1,2, . . .) form an orthogonal basis for the subspace of 
integrable functions f E L2(0, 7) which satisfy fo' f(x) dx = 0, it follows that, given 
any positive c, there exists an integer n and constants a,, a2, ..., a, such that 

(pi+ - AEai(Pi+,l 

= X(3x2 - 27x) - aicos ix < e. 

On the basis of Mikhlin [5, Theorem 1.1], this proves the nonminimality and hence 
nonstrong minimality of the coordinate system (4.2) in the energy space. 

Letting f = 1, we obtain Rn a(n) = f (n) with 

i -174 /12a, 

(4.4) 0 (for i even), 

fi+ 2 = 2 i-2 (for i odd). 
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TABLE 4.3 

Energy norm of the error for the Ritz-solution. 

n Exact Ritz-solution Non-exact Ritz-solution 

5 0.070 0.070 

10 0.020 0.022 

15 0.012 0.012 

20 0.007 0.008 

25 0.005 0.006 

30 0.004 0.007 

35 0.003 0.007 

40 0.002 0.008 

Because of the simple form of Rn, we can solve the system of equations directly to 
yield explicit formulae for the Ritz-coefficients: 

(4.5 ) al 2 =+ 
96 i= odd 1/ i odd ? i=2,even 

for i odd and i ' 3, 

(4.6) -il ) 6 _ f5 1 (n) 
(4.6) a, ~~~~~~~7T 2(i - 

a 

and, for i even and i ' 2, 

(4.7) a 1 - ( 1) 7 + a 

Using these equations, we can examine the source of potential instability in the 
above example. The numerical instability that arises in the Ritz-coefficients a$n) is a 
direct consequence of the form of (4.5). In (4.5) both the numerator and the 
denominator approach zero as n -> ox. Thus, as n increases, cancellation error will 
eventually dominate the computation of both numerator and denominator. The full 
effect of this cancellation error is carried over to (4.6), and to a lesser extent to (4.7), 
since /7.5> ?a(n) 

We can calculate the exact Ritz-coefficients for values of n ranging from 
5,10, ... ,40 with 7 significant digits of accuracy by taking the nature of (4.5), (4.6), 
and (4.7) into account. The results are given in Table 4.1. We calculate the non- 
exact Ritz-coefficients b(n) after rounding the values of fi to 4 significant digits. The 
results are tabulated in Table 4.2. Comparing Tables 4.1 and 4.2, it can be seen that 
the coefficients for a system of size 40 differ by a factor of about 10 for all 9 
coefficients shown. This was in fact true for all the coefficients a$40) (i = 1, 2, . .. 
40). Thus, the numerical instability of the Ritz-coefficients is clearly established for 
the above N.U.A.D. system. 
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Since the exact solution of (4.1) is known explicitly, viz., uO = - ?x(x - I), 
we can calculate the energy norm for the error in the exact approximate Ritz- 
solution u, viz. II Iuo - I II. These values accurate to 3 decimal places are given in 
the first column of Table 4.3 for n = 5, 10,.. ., 40. Similarly, we can calculate the 
energy norm for the error in the nonexact approximate Ritz-solution vn. The results 
are given in the second column of Table 4.3. 

A comparison of the first and second columns of Table 4.3 illustrates clearly the 
effect of the numerical instability in the approximate Ritz-solution. In particular, for 
a system of size 40, the energy norm of the error in the nonexact solution is about 
4 times as large as that in the exact solution. 

Similar results were observed, when we calculated the L2-norm of the error of 
the exact and nonexact approximate Ritz-solutions. However, the actual magnitudes 
of the norms of the errors were much smaller. 
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